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PREAMBLE

» Examples will be in R using RStudio IDE
> R:
> https://wWww.r-project.org
» RStudio:

> https://www.rstudio.com/products/rstudio/download/

» Code on github
> https://github.com/mohsseha/ArchConfRML

» Install necessary packages by running:

Rscript 1-RBasics/loadPackages.R



WHAT IS MACHINE LEARNING FROM 10,000 FEET

» Traditional programming’s goal is automation
» Machine learning: automating automation

» Getting programs to write themselves

» How? Let DATA do the hard work!



TRADITIONAL PROGRAM
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TRADITIONAL PROGRAM

» Knowledge used to design a
blueprint for program

» Engineering task of
constructing a program that
meets specifications

MACHINE LEARNING

» Knowledge is used to decide the final form ! . 8

a program should take
» Engineering task that of a farmer.
> Plant the seed (algorithm)
» Feed/water (data)

> Reap the plants (programs)




MACHINE LEARNING

» “Learners combine knowledge with data to grow programs”
— Pedro Domingos
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COMPONENTS OF ML ALGORITHM

» Representation
» Language for the output program from the machine learner
» Decision trees, neural networks, linear regression, etc.

» Evaluation

» How do we compare candidate programs from the ML
algorithm?

» Optimization

» How can we rapidly find the “best” program



LINEAR MODELING
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LINEAR MODELING
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LINEAR MODELING
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OVERFITTING
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LINEAR MODELING - RIDGE REGRESSION
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LINEAR MODELING - RIDGE REGRESSION
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THE GOOD

» Powerful and easy-to-use
visualizations

> Extremely flexible

» Vast library of packages for
wide range of tasks

> Fast and easy for exploratory
data analysis




THE BAD

» Extremely Flexible

» Poor memory management
» Slow and inefficient

» Hard to productionize

» Poor support for modules,
private namespaces etc.

» Exceptions hard to manage




THE UGLY

> Atypical syntax

» Flexible naming convention
(confusing mixture of . and )

» Multiple OO systems

» Methods typically belong to
functions, not classes

> Indexing starts at 1




BASIC R SYNTAX

More Syntax in 1-RBasics in github repo

» Assignment operator is ->

>a<-5

= is used for default parameter values in function definitions
» c is for combine or convert/coerce

> c(1,4,5)

> c(1, “Hello”, 2.5, “World”)
» Ranges can be succinctly created with :

> c(1:10, 5,6, 2:5)



BASIC R DATA STRUCTURES

» data.frames are extremely common objects for handling tabular data
>myDF <- data.frame(a=c(“Hello”, “World”, “1”),
b=c(1,2,3))
» data.frames can be accessed either positionally or by name
>myDF[1] >myDF[“a”] > myDF$a
>myDF[1,1] >myDF[1, “a”] > myDF$a[1]

>myDF[2, 1:2] >myDF[2, c(1,2)]



BASIC R SYNTAX

» Functions are objects
> hello <- function(){
print(“Hello World”)
}
> hello()

> %>% is a commonly defined pipe operator

> a %>% f(b,c) is equivalent to f(a,b,c)
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LINEAR MODELING - RIDGE REGRESSION
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LINEAR MODELING
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LINEAR MODEL EXAMPLES: DENOISING DOCUMENTS

A new offline handwritten database for the Spanish language
ish senlences, has recently been developed: the Spartacus databa:
ish Restricted-domain Task of Cursive Seript). There were two
this corpus. First of all, most databases do nol conlain Spani.
Spanish is a widespread major language. Another important rea.
from semantic-restricled tasks. These tasks are commonly used
use of linguistic knowledge beyond the lexicon level in the recoq

As the Spartacus database consisted mainly of short sentence
paragraphs. the wrilers were asked lo copy a sel of senlences in |
line ficlds in the forms. Next figure shows one of the forms used
_These forms also contain a brief set of instructions given o the
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GENERALIZE LINEAR MODEL

> Linear regression output ranges from - to o
» How about situation in which the output is a binary variable?

» Generalize linear models:

f(x;w) = g(wo + szmz)



LOGISTIC REGRESSION
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LOGISTIC REGRESSION EXAMPLES
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NEAREST NEIGHBORS

» How can we classify?

» Learn by analogy: I am likely

" R to be similar to what’s near
> Open question of how to

determine distance?
- » How many neighbors do

2 a4 o 1 2 3 a4 we consider?



NEAREST NEIGHBORS
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CURSE OF DIMENSIONALITY

Why can’t we just blindly apply these tools to massive sets
of data with a large number of features?

» Specious connections if we have too much unrelated data
(Washington Redskins Rule)

» Challenges due to exponential increases

» Intuition starts to fail

Tob

Toh

Ty




Better data is always better. There is no arguing
against that. So any effort you can direct towards
"improving" your data is always well invested.
The issue is that better data does not mean more
data. As a matter of fact, sometimes it might
mean less!

-Xavier Amatrian, Quora



DIMENSIONALITY REDUCTION: PRINCIPLE COMPONENT ANALYSIS (PCA)

» Reduce feature dimensionality by finding directions of largest
variation in the data

28 -6 -2 -2 0 2 4 6 8 10




PCA EXAMPLE
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PCA EXAMPLE: TRANSFORM DATA
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PCA EXAMPLE: DETERMINE PRINCIPLE COMPONENTS
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PCA EXAMPLE: “ROTATE" DATA TO PRINCIPLE COMPONENTS

10/3/2014

230.5

240.2

242.4

10/4/2014

225.8

232.1

238.7

10/5/2014

232.1

248

233.6

10/6/2014

240.1

219.4

215.7

10/7/2014

222.8

230.3

240.5

Rotate to Principle

Components

—

10/3/2014 | 200 5
10/4/2014 | 251 3
10/5/2014 | 242 15
10/6/2014 | 232 9
10/7/2014 | 210 10




PCA RESULTS
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MORE PCA EXAMPLES
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SUPPORT VECTOR MACHINES

> Classification: like nearest neighbor or logistic regression
» Representation: A plane dividing classes
> Key idea: Maximize Margins

> Keep only the “Support Vectors”




SVM (KERNEL TRICK)

» SVM can only learn a decision
plane

» A kernel is a function that
maps the input space into a
higher-dimension feature
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SVM EXAMPLE
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SVM PRACTICAL EXAMPLE

UNIVERSITY OF COPENHAGEN

Example: Hydroacoustic signal classification

@ Verification of the comprehensive nuclear-test-ban treaty
@ Data from hydroacoustic network

——

@ SVMs distinguishes explosive events from earthquakes and
noise (4.3 % error)

Tuma, lgel, Prior: Hydroacoustic Signal Classification Using Kernel Functions for Variable Feature Sets. ICPR, 2010 e

e



KEY TAKE AWAYS

» The path to success in
machine learning is quality
data

'
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» Simple ideas can lead to
powerful results

» Common Pitfalls
» QOverfitting

» Curse of Dimensionality



THE END
APPENDIX



REFERENCES:

> Google’s Jeft Dean About NNs Arch: slides
» Quota’s Xavier Amatriain: slides

» This is a good tech debt paper http://
papers.nips.cc/paper/5656-hidden-
technical-debt-in-machine-learning-
systems.pdf
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REFERENCES:

» Tensor Flow: https://news.ycombinator.com/item?
id=10532957 Google Deep learning overview

» Speech recognition history: Siri

» DSP vs. ML: https://www.quora.com/What-are-the-
connections-between-machine-learning-and-signal-processing

» What’s the hype about Deep learning? look at min 5 of this
figure: https://www.youtube.com/watch?v=UREUIUDo4Kk

» MS Algo Guide

» Great 20 min overview The data science revolution




